Safe Haskell | None |
---|---|
Language | Haskell2010 |
- liftOp :: SingI o => Uniform o ns -> VFunc (Len ns) -> TOp ns '[o]
- gmul :: forall ms os ns. (SingI (Reverse os ++ ns), SingI (ms ++ ns), SingI (ms ++ os)) => Length ms -> Length os -> Length ns -> TOp '[ms ++ os, Reverse os ++ ns] '[ms ++ ns]
- transpOp :: forall ns. (SingI ns, SingI (Reverse ns)) => Length ns -> TOp '[ns] '[Reverse ns]
- shuffle :: forall ns ms. SingI ns => Prod (Index ns) ms -> TOp ns ms
- shuffleF :: forall ns ms. (forall f. Prod f ns -> Prod f ms) -> (forall f. Prod f ms -> Prod f ns) -> TOp ns ms
- shuffleF' :: forall ns ms. SingI ns => (forall f. Prod f ns -> Prod f ms) -> (forall f. Prod f ms -> Prod ([] :.: f) ns) -> TOp ns ms
- sumRows :: forall n ns. (SingI n, SingI ns) => TOp '[n ': ns] '[ns]
- sumOp :: SingI n => Uniform n ns -> TOp ns '[n]
- scale :: SingI ns => (forall a. RealFloat a => a) -> TOp '[ns] '[ns]
- konst :: forall n ns. SingI n => Uniform n ns -> (forall a. RealFloat a => a) -> TOp '[] ns
- negate :: SingI ns => TOp '[ns] '[ns]
- map' :: SingI n => (forall a. RealFloat a => a -> a) -> (forall a. RealFloat a => a -> a) -> TOp '[n] '[n]
- map :: SingI n => (forall a. RealFloat a => a -> a) -> TOp '[n] '[n]
- add :: SingI n => TOp '[n, n] '[n]
- add3 :: SingI n => TOp '[n, n, n] '[n]
- zipN' :: SingI n => Uniform n ns -> (forall a. RealFloat a => Vec (Len ns) a -> a) -> (forall a. RealFloat a => Vec (Len ns) a -> Vec (Len ns) a) -> TOp ns '[n]
- zipN :: SingI n => Uniform n ns -> (forall a. RealFloat a => Vec (Len ns) a -> a) -> TOp ns '[n]
- zip' :: SingI n => (forall a. RealFloat a => a -> a -> a) -> (forall a. RealFloat a => a -> a -> (a, a)) -> TOp '[n, n] '[n]
- zip :: SingI n => (forall a. RealFloat a => a -> a -> a) -> TOp '[n, n] '[n]
- zip3' :: SingI n => (forall a. RealFloat a => a -> a -> a -> a) -> (forall a. RealFloat a => a -> a -> a -> (a, a, a)) -> TOp '[n, n, n] '[n]
- zip3 :: SingI n => (forall a. RealFloat a => a -> a -> a -> a) -> TOp '[n, n, n] '[n]
- replicate :: SingI n => Uniform n ns -> TOp '[n] ns
- duplicate :: SingI n => TOp '[n] '[n, n]
- inner :: forall ms ns o. (SingI (o ': ns), SingI (ms >: o), SingI (ms ++ ns)) => Length ms -> Length ns -> TOp '[ms >: o, o ': ns] '[ms ++ ns]
- outer :: (SingI ms, SingI ns, SingI (ms ++ ns)) => Length ms -> Length ns -> TOp '[ms, ns] '[ms ++ ns]
- dot :: SingI m => TOp '['[m], '[m]] '['[]]
- matVec :: (SingI m, SingI n) => TOp '['[m, n], '[n]] '['[m]]
- vecMat :: (SingI m, SingI n) => TOp '['[m], '[m, n]] '['[n]]
- matMat :: (SingI m, SingI n, SingI o) => TOp '['[m, n], '[n, o]] '['[m, o]]
- swap :: TOp '[ms, ns] '[ns, ms]
- swap' :: forall ns ms. Length ns -> Length ms -> TOp (ns ++ ms) (ms ++ ns)
- drop :: forall ms ns. SingI (ns ++ ms) => Length ns -> TOp (ns ++ ms) ms
- take :: forall ns ms. SingI (ns ++ ms) => Length ns -> Length ms -> TOp (ns ++ ms) ns
Documentation
liftOp :: SingI o => Uniform o ns -> VFunc (Len ns) -> TOp ns '[o] Source #
Lift any `R^N -> R^M` function over every element in a n-tensor list, producing a m-tensor list.
gmul :: forall ms os ns. (SingI (Reverse os ++ ns), SingI (ms ++ ns), SingI (ms ++ os)) => Length ms -> Length os -> Length ns -> TOp '[ms ++ os, Reverse os ++ ns] '[ms ++ ns] Source #
transpOp :: forall ns. (SingI ns, SingI (Reverse ns)) => Length ns -> TOp '[ns] '[Reverse ns] Source #
shuffleF :: forall ns ms. (forall f. Prod f ns -> Prod f ms) -> (forall f. Prod f ms -> Prod f ns) -> TOp ns ms Source #
shuffleF' :: forall ns ms. SingI ns => (forall f. Prod f ns -> Prod f ms) -> (forall f. Prod f ms -> Prod ([] :.: f) ns) -> TOp ns ms Source #
konst :: forall n ns. SingI n => Uniform n ns -> (forall a. RealFloat a => a) -> TOp '[] ns Source #
map' :: SingI n => (forall a. RealFloat a => a -> a) -> (forall a. RealFloat a => a -> a) -> TOp '[n] '[n] Source #
zipN' :: SingI n => Uniform n ns -> (forall a. RealFloat a => Vec (Len ns) a -> a) -> (forall a. RealFloat a => Vec (Len ns) a -> Vec (Len ns) a) -> TOp ns '[n] Source #
zipN :: SingI n => Uniform n ns -> (forall a. RealFloat a => Vec (Len ns) a -> a) -> TOp ns '[n] Source #
zip' :: SingI n => (forall a. RealFloat a => a -> a -> a) -> (forall a. RealFloat a => a -> a -> (a, a)) -> TOp '[n, n] '[n] Source #
zip3' :: SingI n => (forall a. RealFloat a => a -> a -> a -> a) -> (forall a. RealFloat a => a -> a -> a -> (a, a, a)) -> TOp '[n, n, n] '[n] Source #
inner :: forall ms ns o. (SingI (o ': ns), SingI (ms >: o), SingI (ms ++ ns)) => Length ms -> Length ns -> TOp '[ms >: o, o ': ns] '[ms ++ ns] Source #