module AOC.Challenge.Day23 (
day23a
, day23b
) where
import AOC.Common (clearOut, mannDist, boundingBox)
import AOC.Solver ((:~>)(..))
import Data.Char (isDigit)
import Data.Foldable (foldl', toList, maximumBy)
import Data.List.NonEmpty (NonEmpty)
import Data.Ord (Down(..), comparing)
import Data.OrdPSQ (OrdPSQ)
import Data.Semigroup.Foldable (foldMap1)
import Data.Witherable (mapMaybe)
import Linear (V2(..), V3(..))
import qualified Data.List.NonEmpty as NE
import qualified Data.OrdPSQ as PSQ
import qualified Linear as L
type Point3 = V3 Int
type BoundingBox = V2 Point3
data Sphere = S { _sCenter :: !Point3
, _sRadius :: !Int
}
deriving (Show, Eq, Ord)
day23a :: _ :~> _
day23a = MkSol
{ sParse = Just . parse23
, sShow = show
, sSolve = \ps -> Just
. (`go` map _sCenter ps)
. maximumBy (comparing _sRadius)
$ ps
}
where
go c = length . filter (`inRangeOf` c)
touchesRegion
:: Sphere
-> BoundingBox
-> Bool
touchesRegion c bb = any (`inRangeOf` c) (boundingCube bb)
|| any (`inRegion` bb) (circleBounds c)
inRangeOf
:: Point3
-> Sphere
-> Bool
p `inRangeOf` S c r = mannDist c p <= r
inRegion :: Point3 -> BoundingBox -> Bool
inRegion p (V2 mn mx) = all (>= 0) (p - mn)
&& all (>= 0) (mx - p)
splitOctants
:: [Sphere]
-> BoundingBox
-> [(BoundingBox, [Sphere])]
splitOctants ss bb0 =
[ (oct, touching)
| oct <- octants bb0
, let touching = filter (`touchesRegion` oct) ss
]
drillDown
:: NonEmpty Sphere
-> Point3
drillDown ss0 = go (addIn bb0 ss0 PSQ.empty)
where
go :: OrdPSQ BoundingBox (Down Int) (NonEmpty Sphere) -> Point3
go q0 = case PSQ.minView q0 of
Nothing -> error "ran out of points? this shouldn't happen."
Just (bb@(V2 mn mx), _, ss, q1)
| mn == mx -> mn
| otherwise -> go $ foldl' (flip processNew) q1 (splitOctants (toList ss) bb)
processNew (bb, ss) = case NE.nonEmpty ss of
Nothing -> id
Just ss' -> addIn bb ss'
addIn bb ss = PSQ.insert bb (Down (length ss)) ss
bb0 = boundingBox . foldMap1 (NE.fromList . circleBounds) $ ss0
octants :: BoundingBox -> [BoundingBox]
octants (V2 mns mxs)
| mns == mxs = []
| otherwise = filter (\(V2 mn mx) -> all (>= 0) (mx - mn))
$ zipWith V2 (boundingCube (V2 mns (mid + 1)))
(boundingCube (V2 mid mxs ))
where
mid = (\x y -> (x + y) `div` 2) <$> mns <*> mxs
boundingCube
:: BoundingBox
-> [Point3]
boundingCube = traverse (\(V2 mn mx) -> [mn,mx]) . L.transpose
day23b :: _ :~> _
day23b = MkSol
{ sParse = Just . parse23
, sShow = show
, sSolve = fmap (mannDist 0 . drillDown) . NE.nonEmpty
}
circleBounds :: Sphere -> [Point3]
circleBounds (S c r) =
[ c + d
| b <- [ V3 r 0 0
, V3 0 r 0
, V3 0 0 r
]
, d <- [b, -b]
]
parse23 :: String -> [Sphere]
parse23 = mapMaybe (go . map read . words . clearOut d) . lines
where
d '-' = False
d c = not (isDigit c)
go [x,y,z,r] = Just $ S (V3 x y z) r
go _ = Nothing