{-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE EmptyCase #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE InstanceSigs #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeInType #-} {-# LANGUAGE TypeOperators #-} -- | -- Module : Data.Type.Predicate -- Copyright : (c) Justin Le 2018 -- License : BSD3 -- -- Maintainer : justin@jle.im -- Stability : experimental -- Portability : non-portable -- -- Combinators for working with type-level predicates, along with -- typeclasses for canonical proofs and deciding functions. -- module Data.Type.Predicate ( -- * Predicates Predicate, Wit(..) -- ** Construct Predicates , TyPred, Evident, EqualTo, BoolPred, Impossible, In -- ** Manipulate predicates , PMap, type Not, decideNot -- * Provable Predicates , Prove, type (-->), type (-->#) , Provable(..) , Disprovable, disprove , ProvableTC, proveTC , TFunctor(..) , compImpl -- * Decidable Predicates , Decide, type (-?>), type (-?>#) , Decidable(..) , DecidableTC, decideTC , DFunctor(..) -- * Manipulate Decisions , Decision(..) , flipDecision, mapDecision , elimDisproof , forgetDisproof, forgetProof, isProved, isDisproved , mapRefuted ) where import Data.Functor.Identity import Data.Kind import Data.List.NonEmpty (NonEmpty(..)) import Data.Maybe import Data.Singletons import Data.Singletons.Decide import Data.Singletons.Prelude hiding (Not, ElemSym1) import Data.Singletons.Prelude.Identity import Data.Type.Functor.Product import Data.Void import qualified Data.Singletons.Prelude.List.NonEmpty as NE -- | A type-level predicate in Haskell. We say that the predicate @P :: -- 'Predicate' k@ is true/satisfied by input @x :: k@ if there exists -- a value of type @P \@\@ x@, and that it false/disproved if such a value -- cannot exist. (Where '@@' is 'Apply', the singleton library's type-level -- function application for mathcable functions). In some contexts, this -- is also known as a dependently typed "view". -- -- See 'Provable' and 'Decidable' for more information on how to use, prove -- and decide these predicates. -- -- The kind @k ~> 'Type'@ is the kind of "matchable" type-level functions -- in Haskell. They are type-level functions that are encoded as dummy -- type constructors ("defunctionalization symbols") that can be decidedly -- "matched" on for things like typeclass instances. -- -- There are two ways to define your own predicates: -- -- 1. Using the predicate combinators and predicate transformers in -- this library and the /singletons/ library, which let you construct -- pre-made predicates and sometimes create predicates from other -- predicates. -- -- 2. Manually creating a data type that acts as a matchable predicate. -- -- For an example of the latter, we can create the "not p" predicate, which -- takes a predicate @p@ as input and returns the negation of the -- predicate: -- -- @ -- -- First, create the data type with the kind signature you want -- data Not :: Predicate k -> Predicate k -- -- -- Then, write the 'Apply' instance, to specify the type of the -- -- witnesses of that predicate -- instance 'Apply' (Not p) a = (p '@@' a) -> 'Void' -- @ -- -- See the source of "Data.Type.Predicate" and "Data.Type.Predicate.Logic" -- for simple examples of hand-made predicates. For example, we have the -- always-true predicate 'Evident': -- -- @ -- data Evident :: 'Predicate' k -- instance Apply Evident a = 'Sing' a -- @ -- -- And the "and" predicate combinator: -- -- @ -- data (&&&) :: Predicate k -> Predicate k -> Predicate k -- instance Apply (p &&& q) a = (p '@@' a, q '@@' a) -- @ -- -- Typically it is recommended to create predicates from the supplied -- predicate combinators ('TyPred' can be used for any type constructor to -- turn it into a predicate, for instance) whenever possible. type Predicate k = k ~> Type -- | Convert a normal '->' type constructor into a 'Predicate'. -- -- @ -- 'TyPred' :: (k -> 'Type') -> 'Predicate' k -- @ type TyPred = (TyCon1 :: (k -> Type) -> Predicate k) -- | The always-true predicate. -- -- @ -- 'Evident' :: 'Predicate' k -- @ type Evident = (TyPred Sing :: Predicate k) -- | The always-false predicate -- -- Could also be defined as @'ConstSym1' Void@, but this defintion gives -- us a free 'Decidable' instance. -- -- @ -- 'Impossible' :: 'Predicate' k -- @ type Impossible = (Not Evident :: Predicate k) -- | @'EqualTo' a@ is a predicate that the input is equal to @a@. -- -- @ -- 'EqualTo' :: k -> 'Predicate' k -- @ type EqualTo (a :: k) = (TyPred ((:~:) a) :: Predicate k) -- | Convert a tradtional @k ~> 'Bool'@ predicate into a 'Predicate'. -- -- @ -- 'BoolPred' :: (k ~> Bool) -> Predicate k -- @ type BoolPred (p :: k ~> Bool) = (PMap p (EqualTo 'True) :: Predicate k) -- | Pre-compose a function to a predicate -- -- @ -- 'PMap' :: (k ~> j) -> 'Predicate' j -> Predicate k -- @ type PMap (f :: k ~> j) (p :: Predicate j) = (p .@#@$$$ f :: Predicate k) -- | A @'Wit' p a@ is a value of type @p \@\@ a@ --- that is, it is a proof -- or witness that @p@ is satisfied for @a@. -- -- It essentially turns a @k ~> 'Type'@ ("matchable" @'Predicate' k@) /back -- into/ a @k -> 'Type'@ predicate. newtype Wit p a = Wit { getWit :: p @@ a } -- | A decision function for predicate @p@. See 'Decidable' for more -- information. type Decide p = forall a. Sing a -> Decision (p @@ a) -- | Like implication '-->', but knowing @p \@\@ a@ can only let us decidably -- prove @q @@ a@ is true or false. type p -?> q = forall a. Sing a -> p @@ a -> Decision (q @@ a) -- | Like '-?>', but only in a specific context @h@. type (p -?># q) h = forall a. Sing a -> p @@ a -> h (Decision (q @@ a)) -- | A proving function for predicate @p@; in some contexts, also called -- a "view function". See 'Provable' for more information. type Prove p = forall a. Sing a -> p @@ a -- | We say that @p@ implies @q@ (@p '-->' q@) if, given @p @@ a@, we can -- always prove @q \@\@ a@. type p --> q = forall a. Sing a -> p @@ a -> q @@ a -- | This is implication '-->#', but only in a specific context @h@. type (p --># q) h = forall a. Sing a -> p @@ a -> h (q @@ a) infixr 1 -?> infixr 1 -?># infixr 1 --> infixr 1 --># -- | A typeclass for decidable predicates. -- -- A predicate is decidable if, given any input @a@, you can either prove -- or disprove @p \@\@ a@. A @'Decision' (p \@\@ a)@ is a data type -- that has a branch @p \@\@ a@ and @'Refuted' (p \@\@ a)@. -- -- This typeclass associates a canonical decision function for every -- decidable predicate. -- -- It confers two main advatnages: -- -- 1. The decision function for every predicate is available via the -- same name -- -- 2. We can write 'Decidable' instances for polymorphic predicate -- transformers (predicates parameterized on other predicates) easily, -- by refering to 'Decidable' instances of the transformed predicates. class Decidable p where -- | The canonical decision function for predicate @p@. -- -- Note that 'decide' is ambiguously typed, so you /always/ need to call by -- specifying the predicate you want to prove using TypeApplications -- syntax: -- -- @ -- 'decide' \@MyPredicate -- @ -- -- See 'decideTC' and 'DecidableTC' for a version that isn't ambiguously -- typed, but only works when @p@ is a type constructor. decide :: Decide p default decide :: Provable p => Decide p decide = Proved . prove @p -- | A typeclass for provable predicates (constructivist tautologies). In -- some context, these are also known as "views". -- -- A predicate is provable if, given any input @a@, you can generate -- a proof of @p \@\@ a@. Essentially, it means that a predicate is "always -- true". -- -- We can call a type a view if, for any input @a@, there is /some/ -- constructor of @p \@\@ a@ that can we can use to "categorize" @a@. -- -- This typeclass associates a canonical proof function for every provable -- predicate, or a canonical view function for any view. -- -- It confers two main advatnages: -- -- 1. The proof function/view for every predicate/view is available via -- the same name -- -- 2. We can write 'Provable' instances for polymorphic predicate -- transformers (predicates parameterized on other predicates) easily, -- by refering to 'Provable' instances of the transformed predicates. class Provable p where -- | The canonical proving function for predicate @p@ (or a canonical -- view function for view @p@). -- -- Note that 'prove' is ambiguously typed, so you /always/ need to call -- by specifying the predicate you want to prove using TypeApplications -- syntax: -- -- @ -- 'prove' \@MyPredicate -- @ -- -- See 'proveTC' and 'ProvableTC' for a version that isn't ambiguously -- typed, but only works when @p@ is a type constructor. prove :: Prove p -- | @'Disprovable' p@ is a constraint that @p@ can be disproven. type Disprovable p = Provable (Not p) -- | The deciding/disproving function for @'Disprovable' p@. -- -- Must be called by applying the 'Predicate' to disprove: -- -- @ -- 'disprove' \@p -- @ disprove :: forall p. Disprovable p => Prove (Not p) disprove = prove @(Not p) -- | If @T :: k -> 'Type'@ is a type constructor, then @'DecidableTC' T@ is -- a constraint that @T@ is "decidable", in that you have a canonical -- function: -- -- @ -- 'decideTC' :: 'Sing' a -> 'Decision' (T a) -- @ -- -- Is essentially 'Decidable', except with /type constructors/ @k -> -- 'Type'@ instead of matchable type-level functions (that are @k ~> -- 'Type'@). Useful because 'decideTC' doesn't require anything fancy like -- TypeApplications to use. -- -- Also is in this library for compatiblity with "traditional" predicates -- that are GADT type constructors. -- -- @since 0.1.1.0 type DecidableTC p = Decidable (TyPred p) -- | The canonical deciding function for @'DecidableTC' t@. -- -- Note that because @t@ must be an injective type constructor, you can use -- this without explicit type applications; the instance of 'DecidableTC' -- can be inferred from the result type. -- -- @since 0.1.1.0 decideTC :: forall t a. DecidableTC t => Sing a -> Decision (t a) decideTC = decide @(TyPred t) -- | If @T :: k -> 'Type'@ is a type constructor, then @'ProvableTC' T@ is -- a constraint that @T@ is "decidable", in that you have a canonical -- function: -- -- @ -- 'proveTC' :: 'Sing' a -> T a -- @ -- -- Is essentially 'Provable', except with /type constructors/ @k -> 'Type'@ -- instead of matchable type-level functions (that are @k ~> 'Type'@). -- Useful because 'proveTC' doesn't require anything fancy like -- TypeApplications to use. -- -- Also is in this library for compatiblity with "traditional" predicates -- that are GADT type constructors. -- -- @since 0.1.1.0 type ProvableTC p = Provable (TyPred p) -- | The canonical proving function for @'DecidableTC' t@. -- -- Note that because @t@ must be an injective type constructor, you can use -- this without explicit type applications; the instance of 'ProvableTC' -- can be inferred from the result type. -- -- @since 0.1.1.0 proveTC :: forall t a. ProvableTC t => Sing a -> t a proveTC = prove @(TyPred t) -- | Implicatons @p '-?>' q@ can be lifted "through" a 'DFunctor' into an -- @f p '-?>' f q@. class DFunctor f where dmap :: forall p q. (p -?> q) -> (f p -?> f q) -- | Implicatons @p '-->' q@ can be lifted "through" a 'TFunctor' into an -- @f p '-->' f q@. class TFunctor f where tmap :: forall p q. (p --> q) -> (f p --> f q) instance (SDecide k, SingI (a :: k)) => Decidable (EqualTo a) where decide = (sing %~) instance Decidable Evident instance Provable Evident where prove = id -- | @since 2.0.0 instance Provable (TyPred (Rec Sing)) where prove = singProd -- | @since 2.0.0 instance Decidable (TyPred (Rec Sing)) -- | @since 2.0.0 instance Provable (TyPred (PMaybe Sing)) where prove = singProd -- | @since 2.0.0 instance Decidable (TyPred (PMaybe Sing)) -- | @since 2.0.0 instance Provable (TyPred (NERec Sing)) where prove = singProd -- | @since 2.0.0 instance Decidable (TyPred (NERec Sing)) -- | @since 2.0.0 instance Provable (TyPred (PIdentity Sing)) where prove = singProd -- | @since 2.0.0 instance Decidable (TyPred (PIdentity Sing)) -- | @since 2.0.0 instance Provable (TyPred (PEither Sing)) where prove = singProd -- | @since 2.0.0 instance Decidable (TyPred (PEither Sing)) -- | @since 2.0.0 instance Provable (TyPred (PTup Sing)) where prove = singProd -- | @since 2.0.0 instance Decidable (TyPred (PTup Sing)) instance (Decidable p, SingI f) => Decidable (PMap f p) where decide = decide @p . applySing (sing :: Sing f) instance (Provable p, SingI f) => Provable (PMap f p) where prove = prove @p . applySing (sing :: Sing f) -- | Compose two implications. compImpl :: forall p q r. () => p --> q -> q --> r -> p --> r compImpl f g s = g s . f s -- | @'Not' p@ is the predicate that @p@ is not true. data Not :: Predicate k -> Predicate k type instance Apply (Not p) a = Refuted (p @@ a) instance Decidable p => Decidable (Not p) where decide (x :: Sing a) = decideNot @p @a (decide @p x) instance Provable (Not Impossible) where prove x v = absurd $ v x -- | Decide @'Not' p@ based on decisions of @p@. decideNot :: forall p a. () => Decision (p @@ a) -> Decision (Not p @@ a) decideNot = flipDecision -- | Flip the contents of a decision. Turn a proof of @a@ into a disproof -- of not-@a@. -- -- Note that this is not reversible in general in constructivist logic See -- 'Data.Type.Predicate.Logic.doubleNegation' for a situation where it is. -- -- @since 0.1.1.0 flipDecision :: Decision a -> Decision (Refuted a) flipDecision = \case Proved p -> Disproved ($ p) Disproved v -> Proved v -- | Map over the value inside a 'Decision'. mapDecision :: (a -> b) -> (b -> a) -> Decision a -> Decision b mapDecision f g = \case Proved p -> Proved $ f p Disproved v -> Disproved $ mapRefuted g v -- | Converts a 'Decision' to a 'Maybe'. Drop the witness of disproof of -- @a@, returning 'Just' if 'Proved' (with the proof) and 'Nothing' if -- 'Disproved'. -- -- @since 0.1.1.0 forgetDisproof :: Decision a -> Maybe a forgetDisproof = \case Proved p -> Just p Disproved _ -> Nothing -- | Drop the witness of proof of @a@, returning 'Nothing' if 'Proved' and -- 'Just' if 'Disproved' (with the disproof). -- -- @since 0.1.1.0 forgetProof :: Decision a -> Maybe (Refuted a) forgetProof = forgetDisproof . flipDecision -- | Boolean test if a 'Decision' is 'Proved'. -- -- @since 0.1.1.0 isProved :: Decision a -> Bool isProved = isJust . forgetDisproof -- | Boolean test if a 'Decision' is 'Disproved'. -- -- @since 0.1.1.0 isDisproved :: Decision a -> Bool isDisproved = isNothing . forgetDisproof -- | Helper function for a common pattern of eliminating the disproved -- branch of 'Decision' to certaintify the proof. -- -- @since 0.1.2.0 elimDisproof :: Decision a -> Refuted (Refuted a) -> a elimDisproof = \case Proved p -> const p Disproved v -> absurd . ($ v) -- | Change the target of a 'Refuted' with a contravariant mapping -- function. -- -- @since 0.1.2.0 mapRefuted :: (a -> b) -> Refuted b -> Refuted a mapRefuted = flip (.) -- | @'In' f as@ is a predicate that a given input @a@ is a member of -- collection @as@. type In (f :: Type -> Type) (as :: f k) = ElemSym1 f as instance (SDecide k, SingI (as :: [k])) => Decidable (In [] as) where decide :: forall a. Sing a -> Decision (Index as a) decide x = go (sing @as) where go :: Sing bs -> Decision (Index bs a) go = \case SNil -> Disproved $ \case {} y `SCons` ys -> case x %~ y of Proved Refl -> Proved IZ Disproved v -> case go ys of Proved i -> Proved (IS i) Disproved u -> Disproved $ \case IZ -> v Refl IS i -> u i instance (SDecide k, SingI (as :: Maybe k)) => Decidable (In Maybe as) where decide x = case sing @as of SNothing -> Disproved $ \case {} SJust y -> case x %~ y of Proved Refl -> Proved IJust Disproved v -> Disproved $ \case IJust -> v Refl instance (SDecide k, SingI (as :: Either j k)) => Decidable (In (Either j) as) where decide x = case sing @as of SLeft _ -> Disproved $ \case {} SRight y -> case x %~ y of Proved Refl -> Proved IRight Disproved v -> Disproved $ \case IRight -> v Refl instance (SDecide k, SingI (as :: NonEmpty k)) => Decidable (In NonEmpty as) where decide x = case sing @as of y NE.:%| (Sing :: Sing bs) -> case x %~ y of Proved Refl -> Proved NEHead Disproved v -> case decide @(In [] bs) x of Proved i -> Proved $ NETail i Disproved u -> Disproved $ \case NEHead -> v Refl NETail i -> u i instance (SDecide k, SingI (as :: (j, k))) => Decidable (In ((,) j) as) where decide x = case sing @as of STuple2 _ y -> case x %~ y of Proved Refl -> Proved ISnd Disproved v -> Disproved $ \case ISnd -> v Refl instance (SDecide k, SingI (as :: Identity k)) => Decidable (In Identity as) where decide x = case sing @as of SIdentity y -> case x %~ y of Proved Refl -> Proved IId Disproved v -> Disproved $ \case IId -> v Refl