| Safe Haskell | None | 
|---|---|
| Language | Haskell2010 | 
Backprop.Learn.Initialize
Contents
Synopsis
- class Initialize p where- initialize :: (ContGen d, PrimMonad m) => d -> Gen (PrimState m) -> m p
 
- gInitialize :: (ADTRecord p, Constraints p Initialize, ContGen d, PrimMonad m) => d -> Gen (PrimState m) -> m p
- initializeNormal :: (Initialize p, PrimMonad m) => Double -> Gen (PrimState m) -> m p
- initializeSingle :: (ContGen d, PrimMonad m, Fractional p) => d -> Gen (PrimState m) -> m p
- reshapeR :: forall i j d m. (ContGen d, PrimMonad m, KnownNat i, KnownNat j) => d -> Gen (PrimState m) -> R i -> m (R j)
- reshapeLRows :: forall i j n d m. (ContGen d, PrimMonad m, KnownNat n, KnownNat i, KnownNat j) => d -> Gen (PrimState m) -> L i n -> m (L j n)
- reshapeLCols :: forall i j n d m. (ContGen d, PrimMonad m, KnownNat n, KnownNat i, KnownNat j) => d -> Gen (PrimState m) -> L n i -> m (L n j)
Documentation
class Initialize p where Source #
Class for types that are basically a bunch of Doubles, which can be
 initialized with a given identical and independent distribution.
Minimal complete definition
Nothing
Methods
initialize :: (ContGen d, PrimMonad m) => d -> Gen (PrimState m) -> m p Source #
initialize :: (ADTRecord p, Constraints p Initialize, ContGen d, PrimMonad m) => d -> Gen (PrimState m) -> m p Source #
Instances
gInitialize :: (ADTRecord p, Constraints p Initialize, ContGen d, PrimMonad m) => d -> Gen (PrimState m) -> m p Source #
initialize for any instance of Generic.
Arguments
| :: (Initialize p, PrimMonad m) | |
| => Double | standard deviation | 
| -> Gen (PrimState m) | |
| -> m p | 
Helper over inititialize for a gaussian distribution centered around
 zero.
initializeSingle :: (ContGen d, PrimMonad m, Fractional p) => d -> Gen (PrimState m) -> m p Source #
initialize definition if p is a single number.
Reshape
reshapeR :: forall i j d m. (ContGen d, PrimMonad m, KnownNat i, KnownNat j) => d -> Gen (PrimState m) -> R i -> m (R j) Source #
Reshape a vector to have a different amount of items If the matrix is grown, new weights are initialized according to the given distribution.