backprop-learn-0.1.0.0: Combinators and useful tools for ANNs using the backprop library

Safe HaskellNone
LanguageHaskell2010

Backprop.Learn.Model.Regression

Contents

Synopsis

Linear Regression

linReg :: (KnownNat i, KnownNat o) => Model (Just (LRp i o)) Nothing (R i) (R o) Source #

logReg :: (KnownNat i, KnownNat o) => Model (Just (LRp i o)) Nothing (R i) (R o) Source #

data LRp (i :: Nat) (o :: Nat) Source #

Linear Regression parameter

Constructors

LRp 

Fields

Instances
(PrimMonad m, KnownNat i, KnownNat o) => LinearInPlace m Double (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(.+.=) :: Ref m (LRp i o) -> LRp i o -> m () #

(.*=) :: Ref m (LRp i o) -> Double -> m () #

(.*+=) :: Ref m (LRp i o) -> (Double, LRp i o) -> m () #

(KnownNat o, KnownNat i) => Linear Double (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(.+.) :: LRp i o -> LRp i o -> LRp i o #

zeroL :: LRp i o #

(.*) :: Double -> LRp i o -> LRp i o #

(KnownNat o, KnownNat i) => Metric Double (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(<.>) :: LRp i o -> LRp i o -> Double #

norm_inf :: LRp i o -> Double #

norm_0 :: LRp i o -> Double #

norm_1 :: LRp i o -> Double #

norm_2 :: LRp i o -> Double #

quadrance :: LRp i o -> Double #

(PrimMonad m, KnownNat i, KnownNat o) => Mutable m (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Associated Types

type Ref m (LRp i o) = (v :: Type) #

Methods

thawRef :: LRp i o -> m (Ref m (LRp i o)) #

freezeRef :: Ref m (LRp i o) -> m (LRp i o) #

copyRef :: Ref m (LRp i o) -> LRp i o -> m () #

modifyRef :: Ref m (LRp i o) -> (LRp i o -> LRp i o) -> m () #

modifyRef' :: Ref m (LRp i o) -> (LRp i o -> LRp i o) -> m () #

updateRef :: Ref m (LRp i o) -> (LRp i o -> (LRp i o, b)) -> m b #

updateRef' :: Ref m (LRp i o) -> (LRp i o -> (LRp i o, b)) -> m b #

(KnownNat i, KnownNat o, PrimMonad m) => Learnable m (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

(KnownNat i, KnownNat o) => Floating (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

pi :: LRp i o #

exp :: LRp i o -> LRp i o #

log :: LRp i o -> LRp i o #

sqrt :: LRp i o -> LRp i o #

(**) :: LRp i o -> LRp i o -> LRp i o #

logBase :: LRp i o -> LRp i o -> LRp i o #

sin :: LRp i o -> LRp i o #

cos :: LRp i o -> LRp i o #

tan :: LRp i o -> LRp i o #

asin :: LRp i o -> LRp i o #

acos :: LRp i o -> LRp i o #

atan :: LRp i o -> LRp i o #

sinh :: LRp i o -> LRp i o #

cosh :: LRp i o -> LRp i o #

tanh :: LRp i o -> LRp i o #

asinh :: LRp i o -> LRp i o #

acosh :: LRp i o -> LRp i o #

atanh :: LRp i o -> LRp i o #

log1p :: LRp i o -> LRp i o #

expm1 :: LRp i o -> LRp i o #

log1pexp :: LRp i o -> LRp i o #

log1mexp :: LRp i o -> LRp i o #

(KnownNat i, KnownNat o) => Fractional (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(/) :: LRp i o -> LRp i o -> LRp i o #

recip :: LRp i o -> LRp i o #

fromRational :: Rational -> LRp i o #

(KnownNat i, KnownNat o) => Num (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(+) :: LRp i o -> LRp i o -> LRp i o #

(-) :: LRp i o -> LRp i o -> LRp i o #

(*) :: LRp i o -> LRp i o -> LRp i o #

negate :: LRp i o -> LRp i o #

abs :: LRp i o -> LRp i o #

signum :: LRp i o -> LRp i o #

fromInteger :: Integer -> LRp i o #

(KnownNat o, KnownNat i) => Show (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

showsPrec :: Int -> LRp i o -> ShowS #

show :: LRp i o -> String #

showList :: [LRp i o] -> ShowS #

Generic (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Associated Types

type Rep (LRp i o) :: Type -> Type #

Methods

from :: LRp i o -> Rep (LRp i o) x #

to :: Rep (LRp i o) x -> LRp i o #

NFData (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

rnf :: LRp i o -> () #

(KnownNat o, KnownNat i) => Backprop (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

zero :: LRp i o -> LRp i o #

add :: LRp i o -> LRp i o -> LRp i o #

one :: LRp i o -> LRp i o #

(KnownNat o, KnownNat i) => Binary (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

put :: LRp i o -> Put #

get :: Get (LRp i o) #

putList :: [LRp i o] -> Put #

(KnownNat i, KnownNat o) => Regularize (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

rnorm_1 :: LRp i o -> Double Source #

rnorm_2 :: LRp i o -> Double Source #

lasso :: Double -> LRp i o -> LRp i o Source #

ridge :: Double -> LRp i o -> LRp i o Source #

(KnownNat o, KnownNat i) => Initialize (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

initialize :: (ContGen d, PrimMonad m) => d -> Gen (PrimState m) -> m (LRp i o) Source #

type Ref m (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

type Ref m (LRp i o) = GRef m (LRp i o)
type Rep (LRp i o) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

type Rep (LRp i o) = D1 (MetaData "LRp" "Backprop.Learn.Model.Regression" "backprop-learn-0.1.0.0-LYs2l1OGpKTGmGWQXOoOXm" False) (C1 (MetaCons "LRp" PrefixI True) (S1 (MetaSel (Just "_lrAlpha") NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 (R o)) :*: S1 (MetaSel (Just "_lrBeta") NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 (L o i))))

lrAlpha :: forall i o. Lens' (LRp i o) (R o) Source #

lrBeta :: forall i o i. Lens (LRp i o) (LRp i o) (L o i) (L o i) Source #

runLRp :: (KnownNat i, KnownNat o, Reifies s W) => BVar s (LRp i o) -> BVar s (R i) -> BVar s (R o) Source #

Reshape

reshapeLRpInput :: (ContGen d, PrimMonad m, KnownNat i, KnownNat i', KnownNat o) => d -> Gen (PrimState m) -> LRp i o -> m (LRp i' o) Source #

Reshape an LRp to take more or less inputs. If more, new parameters are initialized randomly according to the given distribution.

reshapeLRpOutput :: (ContGen d, PrimMonad m, KnownNat i, KnownNat o, KnownNat o') => d -> Gen (PrimState m) -> LRp i o -> m (LRp i o') Source #

Reshape an LRp to return more or less outputs If more, new parameters are initialized randomly according to the given distribution.

expandLRpInput :: (PrimMonad m, ContGen d, KnownNat i, KnownNat j, KnownNat o) => LRp i o -> d -> Gen (PrimState m) -> m (LRp (i + j) o) Source #

Adjust an LRp to take extra inputs, initialized randomly.

Initial contributions to each output is randomized.

expandLRpOutput :: (PrimMonad m, ContGen d, KnownNat i, KnownNat o, KnownNat p) => LRp i o -> d -> Gen (PrimState m) -> m (LRp i (o + p)) Source #

Adjust an LRp to return extra ouputs, initialized randomly

premuteLRpInput :: (KnownNat i, KnownNat o) => Vector i' (Finite i) -> LRp i o -> LRp i' o Source #

Premute (or remove) inputs

Removed inputs will simply have their contributions removed from each output.

permuteLRpOutput :: (KnownNat i, KnownNat o) => Vector o' (Finite o) -> LRp i o -> LRp i o' Source #

Premute (or remove) outputs

ARIMA

arima :: forall p d q. (KnownNat p, KnownNat d, KnownNat q) => Model (Just (ARIMAp p q)) (Just (ARIMAs p d q)) Double Double Source #

data ARIMAp :: Nat -> Nat -> Type where Source #

ARIMA parmaeters

Constructors

ARIMAp 

Fields

Instances
(KnownNat p, KnownNat q, PrimMonad m) => LinearInPlace m Double (ARIMAp p q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(.+.=) :: Ref m (ARIMAp p q) -> ARIMAp p q -> m () #

(.*=) :: Ref m (ARIMAp p q) -> Double -> m () #

(.*+=) :: Ref m (ARIMAp p q) -> (Double, ARIMAp p q) -> m () #

(KnownNat a, KnownNat b) => Linear Double (ARIMAp a b) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(.+.) :: ARIMAp a b -> ARIMAp a b -> ARIMAp a b #

zeroL :: ARIMAp a b #

(.*) :: Double -> ARIMAp a b -> ARIMAp a b #

(KnownNat a, KnownNat b) => Metric Double (ARIMAp a b) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(<.>) :: ARIMAp a b -> ARIMAp a b -> Double #

norm_inf :: ARIMAp a b -> Double #

norm_0 :: ARIMAp a b -> Double #

norm_1 :: ARIMAp a b -> Double #

norm_2 :: ARIMAp a b -> Double #

quadrance :: ARIMAp a b -> Double #

(PrimMonad m, KnownNat p, KnownNat q) => Mutable m (ARIMAp p q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Associated Types

type Ref m (ARIMAp p q) = (v :: Type) #

Methods

thawRef :: ARIMAp p q -> m (Ref m (ARIMAp p q)) #

freezeRef :: Ref m (ARIMAp p q) -> m (ARIMAp p q) #

copyRef :: Ref m (ARIMAp p q) -> ARIMAp p q -> m () #

modifyRef :: Ref m (ARIMAp p q) -> (ARIMAp p q -> ARIMAp p q) -> m () #

modifyRef' :: Ref m (ARIMAp p q) -> (ARIMAp p q -> ARIMAp p q) -> m () #

updateRef :: Ref m (ARIMAp p q) -> (ARIMAp p q -> (ARIMAp p q, b)) -> m b #

updateRef' :: Ref m (ARIMAp p q) -> (ARIMAp p q -> (ARIMAp p q, b)) -> m b #

(KnownNat p, KnownNat q, PrimMonad m) => Learnable m (ARIMAp p q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Floating (ARIMAp p q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

pi :: ARIMAp p q #

exp :: ARIMAp p q -> ARIMAp p q #

log :: ARIMAp p q -> ARIMAp p q #

sqrt :: ARIMAp p q -> ARIMAp p q #

(**) :: ARIMAp p q -> ARIMAp p q -> ARIMAp p q #

logBase :: ARIMAp p q -> ARIMAp p q -> ARIMAp p q #

sin :: ARIMAp p q -> ARIMAp p q #

cos :: ARIMAp p q -> ARIMAp p q #

tan :: ARIMAp p q -> ARIMAp p q #

asin :: ARIMAp p q -> ARIMAp p q #

acos :: ARIMAp p q -> ARIMAp p q #

atan :: ARIMAp p q -> ARIMAp p q #

sinh :: ARIMAp p q -> ARIMAp p q #

cosh :: ARIMAp p q -> ARIMAp p q #

tanh :: ARIMAp p q -> ARIMAp p q #

asinh :: ARIMAp p q -> ARIMAp p q #

acosh :: ARIMAp p q -> ARIMAp p q #

atanh :: ARIMAp p q -> ARIMAp p q #

log1p :: ARIMAp p q -> ARIMAp p q #

expm1 :: ARIMAp p q -> ARIMAp p q #

log1pexp :: ARIMAp p q -> ARIMAp p q #

log1mexp :: ARIMAp p q -> ARIMAp p q #

Fractional (ARIMAp p q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(/) :: ARIMAp p q -> ARIMAp p q -> ARIMAp p q #

recip :: ARIMAp p q -> ARIMAp p q #

fromRational :: Rational -> ARIMAp p q #

Num (ARIMAp p q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(+) :: ARIMAp p q -> ARIMAp p q -> ARIMAp p q #

(-) :: ARIMAp p q -> ARIMAp p q -> ARIMAp p q #

(*) :: ARIMAp p q -> ARIMAp p q -> ARIMAp p q #

negate :: ARIMAp p q -> ARIMAp p q #

abs :: ARIMAp p q -> ARIMAp p q #

signum :: ARIMAp p q -> ARIMAp p q #

fromInteger :: Integer -> ARIMAp p q #

(KnownNat a, KnownNat b) => Show (ARIMAp a b) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

showsPrec :: Int -> ARIMAp a b -> ShowS #

show :: ARIMAp a b -> String #

showList :: [ARIMAp a b] -> ShowS #

Generic (ARIMAp a b) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Associated Types

type Rep (ARIMAp a b) :: Type -> Type #

Methods

from :: ARIMAp a b -> Rep (ARIMAp a b) x #

to :: Rep (ARIMAp a b) x -> ARIMAp a b #

NFData (ARIMAp a b) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

rnf :: ARIMAp a b -> () #

Backprop (ARIMAp a b) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

zero :: ARIMAp a b -> ARIMAp a b #

add :: ARIMAp a b -> ARIMAp a b -> ARIMAp a b #

one :: ARIMAp a b -> ARIMAp a b #

(KnownNat a, KnownNat b) => Binary (ARIMAp a b) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

put :: ARIMAp a b -> Put #

get :: Get (ARIMAp a b) #

putList :: [ARIMAp a b] -> Put #

(KnownNat p, KnownNat q) => Regularize (ARIMAp p q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

rnorm_1 :: ARIMAp p q -> Double Source #

rnorm_2 :: ARIMAp p q -> Double Source #

lasso :: Double -> ARIMAp p q -> ARIMAp p q Source #

ridge :: Double -> ARIMAp p q -> ARIMAp p q Source #

(KnownNat a, KnownNat b) => Initialize (ARIMAp a b) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

initialize :: (ContGen d, PrimMonad m) => d -> Gen (PrimState m) -> m (ARIMAp a b) Source #

type Ref m (ARIMAp p q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

type Ref m (ARIMAp p q) = GRef m (ARIMAp p q)
type Rep (ARIMAp a b) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

type Rep (ARIMAp a b) = D1 (MetaData "ARIMAp" "Backprop.Learn.Model.Regression" "backprop-learn-0.1.0.0-LYs2l1OGpKTGmGWQXOoOXm" False) (C1 (MetaCons "ARIMAp" PrefixI True) (S1 (MetaSel (Just "_arimaPhi") NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 (R a)) :*: (S1 (MetaSel (Just "_arimaTheta") NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 (R b)) :*: S1 (MetaSel (Just "_arimaConstant") NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 Double))))

data ARIMAs :: Nat -> Nat -> Nat -> Type where Source #

ARIMA state

Constructors

ARIMAs 

Fields

Instances
(KnownNat p, KnownNat d, KnownNat q, PrimMonad m) => LinearInPlace m Double (ARIMAs p d q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(.+.=) :: Ref m (ARIMAs p d q) -> ARIMAs p d q -> m () #

(.*=) :: Ref m (ARIMAs p d q) -> Double -> m () #

(.*+=) :: Ref m (ARIMAs p d q) -> (Double, ARIMAs p d q) -> m () #

KnownNat c => Linear Double (ARIMAs a b c) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(.+.) :: ARIMAs a b c -> ARIMAs a b c -> ARIMAs a b c #

zeroL :: ARIMAs a b c #

(.*) :: Double -> ARIMAs a b c -> ARIMAs a b c #

KnownNat c => Metric Double (ARIMAs a b c) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(<.>) :: ARIMAs a b c -> ARIMAs a b c -> Double #

norm_inf :: ARIMAs a b c -> Double #

norm_0 :: ARIMAs a b c -> Double #

norm_1 :: ARIMAs a b c -> Double #

norm_2 :: ARIMAs a b c -> Double #

quadrance :: ARIMAs a b c -> Double #

(PrimMonad m, KnownNat p, KnownNat d, KnownNat q) => Mutable m (ARIMAs p d q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Associated Types

type Ref m (ARIMAs p d q) = (v :: Type) #

Methods

thawRef :: ARIMAs p d q -> m (Ref m (ARIMAs p d q)) #

freezeRef :: Ref m (ARIMAs p d q) -> m (ARIMAs p d q) #

copyRef :: Ref m (ARIMAs p d q) -> ARIMAs p d q -> m () #

modifyRef :: Ref m (ARIMAs p d q) -> (ARIMAs p d q -> ARIMAs p d q) -> m () #

modifyRef' :: Ref m (ARIMAs p d q) -> (ARIMAs p d q -> ARIMAs p d q) -> m () #

updateRef :: Ref m (ARIMAs p d q) -> (ARIMAs p d q -> (ARIMAs p d q, b)) -> m b #

updateRef' :: Ref m (ARIMAs p d q) -> (ARIMAs p d q -> (ARIMAs p d q, b)) -> m b #

(KnownNat p, KnownNat d, KnownNat q, PrimMonad m) => Learnable m (ARIMAs p d q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Floating (ARIMAs p d q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

pi :: ARIMAs p d q #

exp :: ARIMAs p d q -> ARIMAs p d q #

log :: ARIMAs p d q -> ARIMAs p d q #

sqrt :: ARIMAs p d q -> ARIMAs p d q #

(**) :: ARIMAs p d q -> ARIMAs p d q -> ARIMAs p d q #

logBase :: ARIMAs p d q -> ARIMAs p d q -> ARIMAs p d q #

sin :: ARIMAs p d q -> ARIMAs p d q #

cos :: ARIMAs p d q -> ARIMAs p d q #

tan :: ARIMAs p d q -> ARIMAs p d q #

asin :: ARIMAs p d q -> ARIMAs p d q #

acos :: ARIMAs p d q -> ARIMAs p d q #

atan :: ARIMAs p d q -> ARIMAs p d q #

sinh :: ARIMAs p d q -> ARIMAs p d q #

cosh :: ARIMAs p d q -> ARIMAs p d q #

tanh :: ARIMAs p d q -> ARIMAs p d q #

asinh :: ARIMAs p d q -> ARIMAs p d q #

acosh :: ARIMAs p d q -> ARIMAs p d q #

atanh :: ARIMAs p d q -> ARIMAs p d q #

log1p :: ARIMAs p d q -> ARIMAs p d q #

expm1 :: ARIMAs p d q -> ARIMAs p d q #

log1pexp :: ARIMAs p d q -> ARIMAs p d q #

log1mexp :: ARIMAs p d q -> ARIMAs p d q #

Fractional (ARIMAs p d q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(/) :: ARIMAs p d q -> ARIMAs p d q -> ARIMAs p d q #

recip :: ARIMAs p d q -> ARIMAs p d q #

fromRational :: Rational -> ARIMAs p d q #

Num (ARIMAs p d q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

(+) :: ARIMAs p d q -> ARIMAs p d q -> ARIMAs p d q #

(-) :: ARIMAs p d q -> ARIMAs p d q -> ARIMAs p d q #

(*) :: ARIMAs p d q -> ARIMAs p d q -> ARIMAs p d q #

negate :: ARIMAs p d q -> ARIMAs p d q #

abs :: ARIMAs p d q -> ARIMAs p d q #

signum :: ARIMAs p d q -> ARIMAs p d q #

fromInteger :: Integer -> ARIMAs p d q #

KnownNat c => Show (ARIMAs a b c) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

showsPrec :: Int -> ARIMAs a b c -> ShowS #

show :: ARIMAs a b c -> String #

showList :: [ARIMAs a b c] -> ShowS #

Generic (ARIMAs a b c) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Associated Types

type Rep (ARIMAs a b c) :: Type -> Type #

Methods

from :: ARIMAs a b c -> Rep (ARIMAs a b c) x #

to :: Rep (ARIMAs a b c) x -> ARIMAs a b c #

NFData (ARIMAs a b c) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

rnf :: ARIMAs a b c -> () #

Backprop (ARIMAs a b c) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

zero :: ARIMAs a b c -> ARIMAs a b c #

add :: ARIMAs a b c -> ARIMAs a b c -> ARIMAs a b c #

one :: ARIMAs a b c -> ARIMAs a b c #

KnownNat c => Binary (ARIMAs a b c) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

put :: ARIMAs a b c -> Put #

get :: Get (ARIMAs a b c) #

putList :: [ARIMAs a b c] -> Put #

Regularize (ARIMAs p d q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

rnorm_1 :: ARIMAs p d q -> Double Source #

rnorm_2 :: ARIMAs p d q -> Double Source #

lasso :: Double -> ARIMAs p d q -> ARIMAs p d q Source #

ridge :: Double -> ARIMAs p d q -> ARIMAs p d q Source #

KnownNat c => Initialize (ARIMAs a b c) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

Methods

initialize :: (ContGen d, PrimMonad m) => d -> Gen (PrimState m) -> m (ARIMAs a b c) Source #

type Ref m (ARIMAs p d q) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

type Ref m (ARIMAs p d q) = GRef m (ARIMAs p d q)
type Rep (ARIMAs a b c) Source # 
Instance details

Defined in Backprop.Learn.Model.Regression

type Rep (ARIMAs a b c) = D1 (MetaData "ARIMAs" "Backprop.Learn.Model.Regression" "backprop-learn-0.1.0.0-LYs2l1OGpKTGmGWQXOoOXm" False) (C1 (MetaCons "ARIMAs" PrefixI True) (S1 (MetaSel (Just "_arimaYPred") NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 Double) :*: (S1 (MetaSel (Just "_arimaYHist") NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 (R (a + b))) :*: S1 (MetaSel (Just "_arimaEHist") NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 (R c)))))

arimaPhi :: forall a b a. Lens (ARIMAp a b) (ARIMAp a b) (R a) (R a) Source #

arimaTheta :: forall a b b. Lens (ARIMAp a b) (ARIMAp a b) (R b) (R b) Source #

arimaConstant :: forall a b. Lens' (ARIMAp a b) Double Source #

arimaYPred :: forall a b c. Lens' (ARIMAs a b c) Double Source #

arimaYHist :: forall a b c a b. Lens (ARIMAs a b c) (ARIMAs a b c) (R ((+) a b)) (R ((+) a b)) Source #

arimaEHist :: forall a b c c. Lens (ARIMAs a b c) (ARIMAs a b c) (R c) (R c) Source #